Logical aspects of Cayley-graphs: the group case

نویسندگان

  • Dietrich Kuske
  • Markus Lohrey
چکیده

We prove that a finitely generated group is context-free whenever its Cayleygraph has a decidable monadic second-order theory. Hence, by the seminal work of Muller and Schupp, our result gives a logical characterization of context-free groups and also proves a conjecture of Schupp. To derive this result, we investigate general graphs and show that a graph of bounded degree with a high degree of symmetry is context-free whenever its monadic second-order theory is decidable. Further, it is shown that the word problem of a finitely generated group is decidable if and only if the first-order theory of its Cayley-graph is decidable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

On the distance eigenvalues of Cayley graphs

In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...

متن کامل

NORMAL 6-VALENT CAYLEY GRAPHS OF ABELIAN GROUPS

Abstract : We call a Cayley graph Γ = Cay (G, S) normal for G, if the right regular representation R(G) of G is normal in the full automorphism group of Aut(Γ). In this paper, a classification of all non-normal Cayley graphs of finite abelian group with valency 6 was presented.  

متن کامل

COMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q

A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)rtimes Aut(G,S)$ acts transitively on the set of arcs of $Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers.

متن کامل

On the Finite Groups that all Their Semi-Cayley Graphs are Quasi-Abelian

In this paper, we prove that every semi-Cayley graph over a group G is quasi-abelian if and only if G is abelian.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 131  شماره 

صفحات  -

تاریخ انتشار 2005